A Rough Set Based Model to Rank the Importance of Association Rules

نویسندگان

  • Jiye Li
  • Nick Cercone
چکیده

Association rule algorithms often generate an excessive number of rules, many of which are not significant. It is difficult to determine which rules are more useful, interesting and important. We introduce a rough set based process by which a rule importance measure is calculated for association rules to select the most appropriate rules. We use ROSETTA software to generate multiple reducts. Apriori association rule algorithm is then applied to generate rule sets for each data set based on each reduct. Some rules are generated more frequently than the others among the total rule sets. We consider such rules as more important. We define rule importance as the frequency of an association rule among the rule sets. Rule importance is different from rule interestingness in that it does not consider the predefined knowledge on what kind of information is considered to be interesting. The experimental results show our method reduces the number of rules generated and at the same time provides a measure of how important is a rule.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining

Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...

متن کامل

Multigranulation single valued neutrosophic covering-based rough sets and their applications to multi-criteria group decision making

In this paper, three types of (philosophical, optimistic and pessimistic) multigranulation single valued neutrosophic (SVN) covering-based rough set models are presented, and these three models are applied to the problem of multi-criteria group decision making (MCGDM).Firstly, a type of SVN covering-based rough set model is proposed.Based on this rough set model, three types of mult...

متن کامل

A New Approach for Knowledge Based Systems Reduction using Rough Sets Theory (RESEARCH NOTE)

Problem of knowledge analysis for decision support system is the most difficult task of information systems. This paper presents a new approach based on notions of mathematical theory of Rough Sets to solve this problem. Using these concepts a systematic approach has been developed to reduce the size of decision database and extract reduced rules set from vague and uncertain data. The method ha...

متن کامل

ROUGH SET OVER DUAL-UNIVERSES IN FUZZY APPROXIMATION SPACE

To tackle the problem with inexact, uncertainty and vague knowl- edge, constructive method is utilized to formulate lower and upper approx- imation sets. Rough set model over dual-universes in fuzzy approximation space is constructed. In this paper, we introduce the concept of rough set over dual-universes in fuzzy approximation space by means of cut set. Then, we discuss properties of rough se...

متن کامل

Slack-Based Measurement with Rough Data

Rough data envelopment analysis (RDEA) evaluates the performance of the decision making units (DMUs) under rough uncertainty assumption. In this paper, new discussion regarding RDEA is extended. The RSBM model is proposed by integrating SBM model and rough set theory. The process of reaching solution is presented and this model is applied to efficiency evaluation of the DMUs with uncertain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005